Zitat:
Zitat von Against All Odds
Wechseln, die Chance zu gewinnen beträgt dann 2/3
|
des muss ich mir erstmal aufmahlen
Erklärung der Lösung
Einfache Erklärung
Mit der Wechselstrategie gewinnt der Kandidat in zwei Drittel der möglichen Fälle. Am Beispiel: Zeigt er am Anfang auf Tür 1, gewinnt er bei einem Wechsel sowohl, wenn das Auto hinter Tür 2 steht, als auch, wenn es hinter Tür 3 steht. Denn der Moderator muss dann entweder Tür 2 oder Tür 3 öffnen, und der Kandidat öffnet anschließend die andere dieser beiden Türen.
Detaillierte Begründung
Im folgenden wird der Fall angenommen, dass der Kandidat zunächst auf Tür 1 zeigt. Die Begründung für die anderen beiden Fälle verläuft völlig analog. Die in Klammern angegebenen Zahlen beziehen sich zur Begründung der jeweiligen Aussage auf die entsprechende Bedingung der oben aufgeführten Aufgabenstellung.
In 1/3 der Fälle steht das Auto hinter Tür 1. (1) In der Hälfte dieser Fälle, also in 1/6 der Gesamtzahl der Fälle, wird vom Moderator Tür 2 geöffnet, in einem weiteren Sechstel Tür 3. (4)
In 2/3 der Fälle steht das Auto hinter Tür 2 oder Tür 3, und zwar in der einen Hälfte dieser Fälle hinter Tür 2, in der anderen Hälfte hinter Tür 3. (1) In der einen Hälfte dieser Fälle, also in einem Drittel der Gesamtzahl der Fälle, wird vom Moderator Tür 2 geöffnet, in der anderen Hälfte Tür 3. (5)
Durch das Öffnen der Nietentür 2 oder 3 reduziert sich die Zahl der Fälle, bei denen das Auto hinter Tür 2 oder 3 steht, um die Hälfte, also auf 1/3 der Gesamtzahl der Fälle.
Außerdem reduziert sich die Zahl der Fälle, bei denen das Auto hinter Tür 1 steht, ebenfalls um die Hälfte, also auf 1/6 der Gesamtzahl der Fälle.
Die Gewinnwahrscheinlichkeit für diejenige der Türen 2 oder 3, die der Moderator nicht geöffnet hat, beträgt also (1/3)/(1/6 + 1/3) = 2/3.
Das Ergebnis kann man auch so ausdrücken:
Die Gewinnwahrscheinlichkeit für Tür 1 ist eine Invariante des Spiels; ebenso die Gewinnwahrscheinlichkeit für „Tür 2 oder 3“.
wikipedia sei denk hab ichs begriffen

scheiß mathematik
genaueres unter:
http://de.wikipedia.org/wiki/Ziegenproblem